Effects of prolonged copper exposure in the marine gulf toadfish (Opsanus beta) II: copper accumulation, drinking rate and Na+/K+ -ATPase activity in osmoregulatory tissues.
نویسندگان
چکیده
Gulf toadfish were exposed to sublethal levels of copper (12.8 or 55.2 microM) for 30 days. Drinking in control fish averaged 1 ml kg(-1)h(-1) but exposure to 55.2 microM copper resulted in a complex biophasic pattern with initial (3 h and 1 day) inhibition of drinking rate, followed by an elevation of drinking rate from day 3 onwards. Drinking led to copper accumulation in the intestinal fluids at levels three to five times higher than the ambient copper concentrations, which in turn resulted in intestinal copper accumulation. The gill exhibited more rapid accumulation of copper than the intestine and contributed to early copper uptake leading to accumulation in internal organs. Muscle, spleen and plasma exhibited little if any disturbance of copper homeostasis while renal copper accumulation was evident at both ambient copper concentrations. The liver exhibited the highest copper concentrations and the greatest copper accumulation of all examined internal organs during exposure to 55.2 microM. Elevated biliary copper excretion was evident from measurements of gall bladder bile copper concentrations and appeared to protect partially against internal accumulation in fish exposed to 12.8 microM copper. No inhibition of Na+/K+ -ATPase activity in either gills or intestine was seen despite copper accumulation in these organs. Calculations of inorganic copper speciation suggest that Cu(CO3)(2)2- complexes which dominate in seawater and intestinal fluids are of limited availability for uptake while the low levels of ionic Cu2+, CuOH+ and CuCO3 may be the forms taken up by the gill and the intestinal epithelium.
منابع مشابه
Effects of prolonged copper exposure in the marine gulf toadfish (Opsanus beta). I. Hydromineral balance and plasma nitrogenous waste products.
Acute (96 h) and prolonged (30 days) copper exposure induced osmoregulatory disturbance and impaired nitrogenous waste excretion in the marine teleost, the gulf toadfish (Opsanus beta), which was found to be extremely tolerant to acute copper exposure with a 96 h LC50 exceeding 340 microM but exhibited disturbed mineral balance in response to both acute and prolonged exposure to approximately 1...
متن کاملEffects of waterborne silver in a marine teleost, the gulf toadfish (Opsanus beta): effects of feeding and chronic exposure on bioaccumulation and physiological responses.
Marine teleosts drink seawater, and the digestive tract is a key organ of osmoregulation. The gastro-intestinal tract therefore offers a second site for the potential uptake and toxicity of waterborne metals, but how these processes might interact with the digestive functions of the tract has not been investigated previously. We therefore compared the responses of adult gulf toadfish (Opsanus b...
متن کاملHydromineral balance in the marine gulf toadfish (Opsanus beta) exposed to waterborne or infused nickel.
The effects of acute Ni exposure on the marine gulf toadfish (Opsanus beta) were investigated via separate exposures to waterborne nickel (Ni) and arterially infused Ni. Of the plasma electrolytes measured after 72 h of waterborne exposure (215.3 and 606.1 microM Ni in SW (salinity of 34)), only plasma [Ca2+] was significantly impacted (approximately 55% decrease at both exposure concentrations...
متن کاملOuabain-sensitive bicarbonate secretion and acid absorption by the marine teleost fish intestine play a role in osmoregulation.
The gulf toadfish (Opsanus beta) intestine secretes base mainly in the form of HCO3- via apical anion exchange to serve Cl- and water absorption for osmoregulatory purposes. Luminal HCO3- secretion rates measured by pH-stat techniques in Ussing chambers rely on oxidative energy metabolism and are highly temperature sensitive. At 25 degrees C under in vivo-like conditions, secretion rates averag...
متن کاملMaintaining osmotic balance with an aglomerular kidney.
The gulf toadfish, Opsanus beta, is a marine teleost fish with an aglomerular kidney that is highly specialized to conserve water. Despite this adaptation, toadfish have the ability to survive when in dilute hypoosmotic seawater environments. The objectives of this study were to determine the joint role of the kidney and intestine in maintaining osmotic and ionic balance and to investigate whet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Aquatic toxicology
دوره 68 3 شماره
صفحات -
تاریخ انتشار 2004